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ABSTRACT
Boolean Satisfiability (SAT) is a well known NP-complete

problem that forms the basis of modern constraint solv-

ing. The canonical problem consists of a conjunction of

boolean clauses where each clause is a disjunction of lit-

erals. The problem is to determine whether there exists a

satisfying assignment (and find it if it does). Despite the

theoretical hardness of the SAT problem, modern solvers

are extremely efficient and sophisticated in terms of the al-

gorithms and heuristics they use. This is especially true for

industrial instances generated from practical applications.

Even so, further performance gains are harder to produce,

while there still exist instances that are unsolvable by mod-

ern solvers. Fortunately, this is also a time when the gen-

eralization and availability of multicore hardware makes it

easier to take advantage of parallel processing capabilities for

further speedups. In this paper, we focus on massive paral-

lelization (very large number of processors) of SAT solvers.

The goal is to obtain a detailed understanding of the fac-

tors that affect performance, communication overheads and

efficient ways to encode domain specific knowledge.

General Terms
SAT Solving, Parallelism

Keywords
distributed memory, shared memory, portfolio, divide and

conquer, MPI, OpenMP, ManySAT

1. INTRODUCTION
In addition to the traditional hardware and software ver-

ification domains, SAT solvers are increasingly popular in

newer domains such as computational biology and general

theorem proving. This widespread adoption is mainly due to

the significant efficiency gains made during the last decade.

Modern SAT solvers are capable of handling instances with

hundreds of thousands of variables and millions of clauses,

and solving them in the order of a few minutes. This is due

to both algorithmic improvements in the theory of SAT solv-

ing, and better understanding of the structure of instances.

Despite these impressive improvements, new instances con-

sistently challenge the best modern solvers. Each annual

SAT Competition [2] sees instances that are unsolvable by

any solver within a reasonable amount of time. At the same

time, it is becoming harder to discover low level or high level

algorithmic adjustments for increasing efficiency. In this sce-

nario, it is not only natural, but crucial that SAT solvers

should be extended to parallel and/or distributed hardwares

that are now much easier to access and relatively program-

mer friendly. At the core, SAT solvers perform search over

a well defined search space, and there are interesting chal-

lenges to be tackled for parallelizing this search.

Several parallel SAT solvers have been proposed in the past

few years. A brief survey is presented in Section 7. Broadly,

parallel SAT solvers are based on one of the following ap-

proaches

1. Divide and Conquer : These solvers either divide the

search space using certain heuristics, or decompose the

formula itself using decomposition techniques. The

major challenge with this approach is the difficulty of

workload balancing between different processor units.

Appropriate search space division is yet another chal-

lenge. Sharing information could also get tricky.

2. Portfolio: Portfolios take advantage of the main weak-

ness of modern solvers - their sensitivity to parame-

ter tuning. Each processor unit runs a version of the

solver with predetermined parameters, working on the

full problem instance. This combination of solvers is



designed to represent orthogonal yet complementary

strategies. In addition, solvers can exchange learned

information to further speed up the search. The main

challenge with this approach is ensuring that the port-

folio is diverse.

In general, the workload of each processor unit can be visual-

ized as INSTANCE(Problem instance, Solver, Search space)

- a function of three parameters. Varying the search space

results in the divide and conquer approach, and varying the

solver results in the portfolio. Any of the three parameters

could be varied to obtain a valid parallelization.

The rest of the paper is organized as follows. In Section 2,

we describe the main goals that this paper aims for in terms

of improvement over state of the art in parallel SAT solving.

Section 3 describes some commonly used modern techniques

that SAT solvers use to perform search, and heuristics to

make it efficient and fast. In Section 4, we present the struc-

ture of our parallel SAT solver and some reasoning for our

design decisions. Sections 5 and 6 describe the environment

for our experiments and our results, respectively. Section 7

presents previous relevant work in the area, and Section 8

concludes with the insights obtained from our experiments

and some future work.

2. OBJECTIVES
In this section, we describe the contributions we intend to

present with this work. This includes both improvements

over existing parallel SAT solvers and a better understand-

ing of how parallel SAT solving could be made to scale more

efficiently. In recent competitions, portfolio solvers have

achieved much more success than their divide and conquer

counterparts. While the idea of portfolios is appealing, most

implementations use minimal to no sharing of learned infor-

mation, and there is little insight (except for some empirical

data) on which parameters work best.

Additionally, an important aspect lacking from successful

parallel solvers like ManySAT [22] and Plingeling [1] is mas-

sive scaling experiments. While massively parallel hardware

is easy to access, these solvers use shared memory, which

restricts the degree of parallelism that can be attained by

restricting them to cores on a single node. This means that

little has been explored in the domain of scaling the size

of parallel solvers up to a few hundred or thousand cores.

There is some work on scaling simple portfolios (without

sharing) to massively parallel environments [5, 19], but with

limited success. In this paper, we evaluate scaling results

for our implementation of a parallel SAT solver intended to

scale to hundreds or thousands of cores, using a combination

of shared and distributed memory. The implementation is

described in detail in Section 4. We evaluate our work based

on trying to answer the following questions

1. Scaling to a large number of cores: How many cores is

it possible to scale our solver to?

2. Demonstrating parallel scaling : Does adding more cores

make the solver faster?

3. Speedups over existing solvers: Can we do better than

existing parallel solvers?

4. Solve intractable instances: Can we solve instances

that other parallel solvers cannot?

3. BACKGROUND
In this section, we briefly describe the high-level algorithms

and heuristics which modern SAT solvers use.

3.1 Conjunctive Normal Form
Conjunctive Normal Form (CNF) has been accepted as the

canonical way of representing a SAT instance. Any propo-

sitional formula can be written in CNF form. A formula

in CNF form consists of variables and clauses. Formally, a

formula φ is in CNF form if it is a conjunction of clauses i.e.

φ = C1∧C2∧· · ·∧Cm. Each clause is a disjunction of literals

i.e. Ci = l1 ∨ l2 ∨ · · · ∨ lti . A literal is simply a variable v or

its negation ¬v. The formula is satisfiable if there exists an

assignment of True/False values to the variables such that

all the clauses are satisfied.

3.2 DPLL Search
Most of the state of the art solvers are based on the Davis,

Putnam, Logemann and Loveland procedure, commonly known

as DPLL [9]. DPLL is a backtracking search procedure. At

each node of the search tree, a decision literal is chosen ac-

cording to some branching heuristics. It is assigned one of

the possible values (True or False), which is followed by an

inference step that deduces and propagates some forced lit-

eral assignments such as unit and monotone literals. All

assignments made by a decision and the resulting propaga-

tions are at the same decision level. The decision level is

increased with each new decision, increasing until either a

satisfiable assignment or conflict is found. In the first case,

the solver returns the found assignment, and in the second

case, the solver backtracks to the last decision level and re-

verses the decision at that level (by assigning it the opposite

value). The formula is declared to be unsatisfiable when a

backtrack to level 0 occurs. While the basic DPLL proce-

dure is simply backtracking search, many improvements and

optimizations have been proposed over the years.



3.3 Modern SAT solvers
Modern SAT solvers [16, 14] are based on the classical DPLL

search procedure, combined with heuristics such as

1. Restart policies [6, 12] which prevent the search from

getting stuck in unsatisfiable parts of the search space

at deep decision levels. During a restart, the solver ef-

fectively leaves its search and starts afresh, still keep-

ing learned information from the earlier part of the

search. Rapid restarts have been shown to be very

effective in reducing running times [7].

2. Activity-based variable selection heuristics (e.g. VSIDS)

[14] keep track of the frequency of occurrence of vari-

ables during the search. This provides more informa-

tion about variables which are potentially important

to the search, thereby helping to intensify the search.

3. Conflict Driven Clause Learning (CDCL) [17] is a key

technique which generates additional clauses whenever

the search reaches a conflict. Clauses are crucial in

helping to prune the search space so that similar con-

flicts are not repeated, and the solver does not delve

into parts of the search space that have caused a con-

flict before. Learned clauses could also trigger addi-

tional unit propagations, and help in non-chronological

backtracking.

4. Progress saving [8], which can be seen as a partial com-

ponent caching technique, saves polarities of variables

assigned between two decision levels. Similar polarities

are used in a subsequent search, which avoids solving

some components multiple times.

Efficient data structures are implemented to manage and up-

date information for these heuristics. Modern SAT solvers

are especially efficient with “structured” SAT instances com-

ing from industrial applications. There are several other

heuristics that have been tried, many of which try to opti-

mize the solver to solve problems from a specific domain.

4. SOLVER DESCRIPTION
In this section, we describe the structure of our parallel SAT

solver. Our solver implements a combined divide and con-

quer plus portfolio approach. At the high level, our solver is

a divide and conquer solver. The search space is divided into

multiple disjoint parts and a separate process is launched to

handle each such part. Each process, however, is a parallel

portfolio of multiple threads running independent solvers to

solve the assigned part of the search space. Threads in a

single process are implemented using OpenMP, so they use

shared memory. This makes sharing learned clauses within a

Figure 1: Visualization of the divide and conquer

guiding paths approach.

single process fast. Processes, on the other hand, communi-

cate using message passing (implemented using MPI). The

number of processes as well as the number of threads per

process can both be varied to tune for optimal performance.

This method of parallelization does not require large portfo-

lios, since the size of the portfolio is restricted to the number

of cores in a node (in our experiments, this is 24. See Section

5). Scaling is dependent on division of search space, which

is performed using the notion of guiding paths [11, 20, 10].

Given a problem instance φ, a guiding path G is a set of

constraints created by forcing True/False values on a small

set of variables of φ. This results in the smaller (more con-

strained) search space defined by φ ∧ G. An exhaustive set

of guiding paths G1,G2, · · · ,Gt is created when the solver is

started, and the corresponding search spaces are assigned to

each process. Figure 1 illustrates our design with 4 processes

created using guiding paths of length 2, using variables x1

and x2.

The choice of guiding paths is crucial to solver performance.

Picking arbitrary variables will divide the search space, but

might provide negligible speedups in performance. An im-

portant parameter to optimize the solver is to consider bet-

ter guiding paths - ones that contain “important” variables.

We currently pick guiding paths based on the first few de-

cisions made by the VSIDS heuristic of the solver. A po-

tentially more optimal way could be to obtain information

about variables from the high-level domain (such as syn-



thetic biology, model checking etc.) from which the problem

instance was generated.

We note that parallelizing in this way enables us to scale our

solver to a large number of cores. An alternative would be to

scale the portfolio directly, having a large number of parallel

instances of the solver that operate on the same instance

[5]. Since solver parameters are limited in number, creating

a large portfolio needs additional heuristics which are not

readily evident. In addition, communication could become

a bottleneck at a large scale, since it would have to be done

using message passing while ensuring that solvers are not

burdened with the very large number of learned clauses that

would be generated. The advantages of scaling would vanish

beyond a point. On the other hand, having a fully divide

and conquer solver would just allow us to use longer guiding

paths (but not much longer), and this could fail if the wrong

paths were chosen, taking a very long time on spaces that

need to be explored to greater depths.

5. EXPERIMENTAL SETUP
Our hybrid parallelization approach is well-suited for ar-

chitectures with multiple processors per node and several

nodes executing in parallel. This two-level approach where

OpenMP threads run within a node (shared memory par-

allelism) and MPI processors run across nodes (distributed

memory parallelism) gives us great flexibility across many

different architectures. In this paper, we provide experi-

mental data collected on NERSC Hopper.

Hopper1 is a Cray XE6 system with 153,216 processors, 217

Terabytes of memory, 2 Petabytes of disk storage and has a

peak performance of 1.28 Petaflops/sec. Each node of Hop-

per contains 24 AMD MagnyCours processors and 32 GB of

DDR3 memory – some Hopper nodes have 64 GB of DDR3

memory to support applications with high memory require-

ments. Each compute node has the processor-memory lay-

out shown in Figure 2. The compute node contains 2 Magny-

Cours chips with 12 cores each, each chip is further divided

into 2 dies with 6 cores.

Communication between the cores is supported through a

HyperTransport 3.0 bidirectional interconnect. It should be

noted that interconnect latencies and bandwidths differ for

the on-chip interconnect (between two dies on the same chip)

and the off-chip interconnect (between two dies on different

chips). The memory layout is also non-uniform; each die has

2 sockets to memory and as a result data layout and data

locality play an important role in performance tuning. For

our experiments we do not attempt to tune the SAT solver

1http://www.nersc.gov/users/computational-
systems/hopper/

Figure 2: NERSC Hopper hardware layout
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Figure 3: Strong scaling of Plingeling on several

SAT/UNSAT instances

for efficient data access. We take a more high-level approach

and simply vary the number of MPI processes per node and

OpenMP threads per process to see whether NUMA effects

have a non-negligible effect on performance.

6. PERFORMANCE EVALUATION
In this section, we evaluate the performance of existing SAT

solvers and compare the best existing solver to our dis-

tributed memory parallel version.

6.1 Performance of Existing Solvers
We begin by first comparing the scaling of two existing SAT

solvers, Plingeling and ManySAT 2.0. This data was cru-

cial in selecting a good solver to modify and extend to dis-

tributed memory, parallel machines. Ideally we would have

written an optimized SAT solver for distributed memory.

However that would have been a massive software engineer-

ing effort due to the complexity of SAT solvers. Therefore,

we decided to extend one of the existing SAT solvers written

to take advantage of shared memory parallelism.

Figures 3, 4 show strong scaling performance of Plingeling

and ManySAT, respectively, for 3 UNSAT instances and 1

SAT instance. These results were used to determine which

SAT solver to modify for our MPI-based, distributed mem-
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SAT/UNSAT instances

ory SAT solver. Before discussing the performance of Plin-

geling and ManySAT, we briefly describe how to interpret

Figures 3 and 4. The y-axes (scaling factor) represents how

well each solver scales across increasing number of threads

used for each dataset. The scaling factor2 is in units of

(seconds) × (number of threads), which means that a line

with zero slope shows perfect, linear scaling, positive slopes

represent poor scaling and negative slopes represent super

linear scaling.

Figure 3 shows the performance of Plingeling for each SAT/

UNSAT instance on a single node of Hopper while varying

the number of threads used by the solver. We see that Plin-

geling doesn’t scale very well for any instance, except for

the Encry3 dataset while running with 12 threads. Encry3

is a large UNSAT instance and the speedup at 12 threads

might be attributed to having a large enough solver port-

folio where clause sharing leads to rapid convergence of the

solver. Beyond 12 threads we see that communication over-

head of clause sharing causes a slowdown. In general, Figure

3 suggests that Plingeling does not scale very well on a sin-

gle node of Hopper and may not be the best solver to use

for our distributed memory implementation.

Figure 4 shows the strong scaling performance of ManySAT

and we see that this solver performs much better on Hop-

per. In fact, ManySAT exhibits super linear scaling for a

certain range of threads on all of the UNSAT instances.

Once again, we believe that this is due to having a diverse

portfolio where clause sharing leads to faster convergence.

Beyond 12 threads the communication overhead of clause

sharing introduces inefficiencies and results in poor scaling

2The magnitude in the y-direction is not an important mea-
sure. The trend (slope) across the number of threads is key.

at 24 threads. ManySAT performs just as poorly for the

SAT instance between 3 and 12 threads and we were unable

to run with 24 threads due to memory constraints. Plin-

geling was able to scale to 24 threads primarily because it

uses a soft memory limit in the software where threads will

not be created when current memory usage grows beyond

50% total node memory – ManySAT does not implement

this soft limit. Based on these results we chose to modify

ManySAT for our distributed memory implementation.

6.2 MPIManySAT Performance
In this section we compare the performance of MPIManySAT

to the performance of ManySAT and gauge whether our dis-

tributed memory implementation has advantages over exist-

ing shared memory implementations. Before describing our

results we would like to briefly describe a feature provided

by ManySAT. When launching ManySAT the user can spec-

ify whether the solver runs in deterministic mode or non-

deterministic mode. These two modes have a large impact

on running times, therefore we evaluate the performance of

ManySAT and MPIManySAT under both modes.

The primary difference between the two solver modes is

that the deterministic setting utilizes OpenMP barriers to

synchronize thread communication (during clause sharing)

whereas the non-deterministic setting does not. In the non-

deterministic mode, threads can potentially miss important

clauses that may lead to faster convergence. Conversely, a

thread making fast progress towards the solution can easily

reach it without unnecessary OpenMP barrier synchroniza-

tions. For the non-deterministic mode we repeat the runs

three times and plot all three running times, in order to show

the variability in running times.

We collected running time data for ManySAT and MPI-

ManySAT on Hopper using two datasets: an easy SAT in-

stance and an easy UNSAT instance. Figures 5 and 6 show

the running time performance on the easy SAT and easy

UNSAT instances, respectively, for both solvers. The fig-

ures show results from both solvers and use the following

convention: the left half of the x-axis (from 3 to 24 threads)

show results for ManySAT on a single node of Hopper and

the right half of the x-axis (from 192 to 768 processors) show

results for MPIManySAT on several nodes of Hopper. For

MPIManySAT we launch 2 MPI processes per node and 12

OpenMP threads per MPI process.

Deterministic ManySAT performance in Figure 5 suggests

that running times are quite variable as we scale up the num-

ber of threads. In particular, there is a slowdown between

3 threads and 6 threads which we believe is attributable to

the fact that the portfolio is not diverse enough to converge
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Figure 5: Comparison of ManySAT and MPI-

ManySAT on an easy SAT instance

faster than 3 threads and we pay for the OpenMP barrier

synchronization. However, at 12 threads the portfolio be-

comes diverse enough that one or more of the threads are

on promising search paths and the clause learning (synchro-

nization) helps. Finally, at 24 threads we see synchroniza-

tion overhead dominating any gains from portfolio diver-

sity. In the non-deterministic case for ManySAT we see large

variability in running times, across all thread ranges. Even

though we collect only 3 data points for non-deterministic

ManySAT, the running times have large variability. It is

clear that non-determinism could potentially solve the prob-

lem faster. But without luck, the problem could see large

slowdowns. The primary reason for the large slowdowns is

the fact that threads might miss important synchronization

events where learned clauses can accelerate convergence.

Deterministic MPIManySAT performance in Figure 5 ex-

hibits much more predictable scaling behavior where we see

a speed up from 192 cores to 384 cores but then slowdown at

768 cores due to too much synchronization overhead. Note

that because our dataset is an easy SAT instance it is not

entirely necessary to use so many cores, as a result the

MPIManySAT running times are slightly slower than the

ManySAT running times. The most interesting results are

the running times for non-deterministic MPIManySAT. We

see that the running times are clustered much more closely

than ManySAT. This result should be expected given that

the MPI version uses a divide and conquer strategy based

on guiding paths that divides the search space among the

MPI processes. Due to the search space division, clause

sharing between MPI processes can be eliminated since the

search space is different for each MPI process. In addition,

if the SAT instance has several satisfiable assignments then

multiple MPI processes can reach such an assignment thus

leading to a race-to-halt condition. This is precisely why

3 6 12 24 192 384 768
40

60

80

100

120

140

160

180

200

220

240
ManySAT2.0 vs. MPIManySAT2.0 on NERSC Hopper (Easy UNSAT)

Number of threads/procs

R
u
n
n
in

g
 T

im
e
 (

s
e
c
o
n
d
s
)

 

 

Deterministic OMP
Non−deterministic OMP
Deterministic MPI
Non−deterministic MPI

Figure 6: Comparison of ManySAT and MPI-

ManySAT on an easy UNSAT instance

the non-deterministic running times for the MPI version are

clustered closer together and faster than the running times

for non-deterministic and deterministic ManySAT.

Figure 6 shows running time performance of ManySAT and

MPIManySAT for an easy UNSAT instance. Deterministic

ManySAT scales well from 3 threads to 12 threads and the

reason for this is because UNSAT instances require explo-

ration of the entire search space. Therefore, clause sharing

has a lower overhead in comparison to the time taken to

explore the search space. However, it should be noted that

eliminating the synchronization overhead is, for the most

part, much faster in the non-deterministic case. The reason

for the speed up without synchronization is because this is

an UNSAT instance.

MPIManySAT does not scale very well for the UNSAT in-

stance. This is due to the MPI startup overhead – note the

linear increase in running time – and because the UNSAT

instance is easy to solve. Another difference between the

MPI performance on the SAT instance and the UNSAT in-

stance is that the MPI version can exit immediately after

one process finds a satisfiable solution. However, in the UN-

SAT case we must wait until all MPI processes have finished

before concluding that the problem is unsatisfiable. As be-

fore, the non-deterministic version of MPIManySAT shows

much closer clustering than non-deterministic ManySAT.

From these experiments we can conclude that MPIManySAT

performs well on the SAT instance in comparison to ManySAT.

We are less successful on the UNSAT instance but this is due

to the fact that the both instances are easy to solve. Even

with this drawback, our solver is much more reliable under

the non-deterministic case than ManySAT. This suggests

that our solver might be able to solve hard SAT instances



Hard SAT (deterministic, MPIManySAT)

Number of cores Running Time (sec)

384 1984.0

768 511.0

Hard SAT (non-deterministic, ManySAT)

Number of threads Running Time (sec)

12 2067.0

24 1730.0

Speedup: 3.3× (24 threads vs. 768 cores)

Table 1: Running time results for MPIManySAT

and ManySAT for a hard SAT instance.

that ManySAT may not be able to solve. Being able to do

so would, in and of itself, be a success.

6.3 MPIManySAT Tuning
Our hybrid parallelization approach offers us the opportu-

nity to tune the performance of our SAT solver by varying

the number of OpenMP threads used by each MPI process.

Optimizing the number of threads per MPI process should

allow us to better utilize the hardware by making efficient

use of NUMA by mapping one MPI process to each NUMA

region. As described in Section 5, Hopper has 4 NUMA

regions with 6 cores each. We experiment with different

MPI process to threads ratios, beginning with launching one

MPI process per NUMA region (with 6 OpenMP threads

each) and ending with one MPI process per node (with 24

OpenMP threads). Note that a tradeoff exists as we begin to

increase the number of MPI processes per node. If each node

runs multiple MPI processes then our guiding paths can be

longer. For example, two MPI processes on a single node of

Hopper can divide the search space using a single variable.

However, four MPI processes on a single node of Hopper can

divide the search space using two variables. Naturally, this

is an important tradeoff to explore because striking the right

balance between search space division, efficient hardware use

and portfolio diversity is critical.

Figure 7 shows the running time of MPIManySAT for 3 pro-

cessor ranges and varies the number of OpenMP threads as-

signed to each MPI process from 6 threads per process to

24 threads per process. We use an easy UNSAT instance so

that the race-to-halt condition for SAT instances does not

affect the experiments. We also run the experiments under

deterministic mode so that reproducibility is guaranteed.

Figure 7 suggests that mapping 6 threads to each MPI pro-

cess is inefficient. We believe that this is due to insufficient

diversity in the solver portfolio which leads to inefficient ex-
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of MPIManySAT for an easy UNSAT instance

ploration of the search space assigned to each MPI process.

With 6 threads per MPI process the solver can use longer

guiding paths, however, the lack of diversity leads to ineffi-

cient exploration of the assigned search space. Assigning 12

threads to each MPI process seems to perform much better

and lead to speedup as we scale the number of processors.

At 24 threads per MPI process we experience a slowdown as

we scale the number of processors, however, we find that at

192 cores we perform just as well as 12 threads at 768 cores.

These two points suggest that longer guiding paths are an

important factor for scalability but not an important factor

for running time (at least for this easy UNSAT instance). At

24 threads and 192 processors we have a large solver port-

folio but short guiding paths whereas at 12 threads and 768

processors we have a smaller solver portfolio but longer guid-

ing paths. Clearly, this shows that a tradeoff exists between

the diversity of the portfolio and the length of the guiding

paths.

We can also draw conclusions regarding the importance of

variables chosen for the guiding paths. Comparing the data

points for 12 threads, 192 cores and 24 threads, 192 cores the

main difference is that at 12 threads per process we choose a

fourth variable for the guiding path. Based on the running

times it is clear that the fourth variable is not as important

given that we do not see a speedup after choosing it for the

guiding path. This means that the heuristic for choosing

a variable for the guiding path is just as important as the

diversity of the portfolio.

6.4 Hard SAT Instance Performance
One of our main metrics of success is to be able to solve

hard SAT/UNSAT instances that existing solvers cannot

currently solve. We use deterministic ManySAT as our point

of comparison due to the running time reproducibility guar-



anteed under deterministic solver mode. We also ran MPI-

ManySAT under deterministic mode as a fair comparison,

with the only difference being the search space division for

the MPI version.

Table 1 shows the results of our experiments. We chose

to limit running times to a maximum of 90 minutes, after

which we killed the solver and called that run a failure. We

believe that this is a reasonable limit to place given that

allocations on supercomputing resources are finite and con-

servation is a legitimate concern. Under these limits, we

found that MPIManySAT was able to successfully solve the

hard SAT instances for 384 cores and 768 cores. Interest-

ingly, the MPI version shows super linear speedup (a 1.9×
speedup) between 384 cores and 768 cores. The main differ-

ence between the two runs is that at 768 cores we subdivide

the search space using another variable and that variable

is key to reaching the solution faster. This acceleration is

quite promising because it suggests that selecting the “right”

variables to prune the search space can have a large impact

on time to solution.

In comparison, ManySAT did not perform well while run-

ning in deterministic mode. ManySAT was unable to finish

within the allotted 90 minutes for any number of threads.

This shows that search space division is an important com-

ponent in being able to solve hard SAT instances. However,

to be completely fair we re-ran the hard SAT instance with

ManySAT running in non-deterministic mode. We repli-

cated the run 3 times to get a fair spread of the running

time and found that most runs did not finish in 90 mins.

However, table 1 shows the running times of the runs that

did finish (we only show the best running times in the ta-

ble). Even then, our MPI version (running in deterministic

mode) performs much better than the best non-deterministic

ManySAT run and achieves a speedup of 3.3×. Once again,

we stress that MPIManySAT was able to finish determin-

istically while ManySAT was not able to do so. It should

also be noted that we can reasonably expect MPIManySAT

to perform even better under non-deterministic mode given

the results in Figures 5 and 6.

7. RELATED WORK
We present some noticeable related work in the area of par-

allel SAT solving.

ManySAT [22] was the first portfolio solver, that created

portfolios based on varying parameters such as restart poli-

cies, randomness in the decision heuristic and variable polar-

ity heuristic. It is built on top of MiniSAT [16] with a shared-

memory model using OpenMP. The communication between

the solvers is organized through lockless queues which con-

tain all the learned clauses that a particular core wants to

share. Since it uses MiniSAT, each core runs a CDCL-based

DPLL solver that broadcasts all learned clauses of up to a

fixed length (this length is determined empirically). Our

solver is built on top of ManySAT.

Plingeling [1] is another successful portfolio based parallel

solver that uses the POSIX pthreads library for paralleliza-

tion. It is built on top of Lingeling [1]. While there are

differences in the approaches and heuristics used compared

to ManySAT, the fundamental architecture and design is

similar.

PSATO [11] is based on the SATO (SAtisfiability Testing

Optimized) sequential solver. Like SATO, it uses a trie data

structure to represent clauses. Like our solver, PSATO uses

the notion of guiding-paths to divide the search space of the

problem. Although in this case, the exploration is organized

in a master/slave model. The master assigns guiding paths

to workers, and performs load balancing. Gradsat [20] is a

parallel solver based on zChaff, and is similar in structure

to PSATO, except that it also allows for sharing of learned

clauses between slave workers. A client incorporates a for-

eign clause when it backtracks to level 1 (top level). In [21],

the architecture is similar to Gradsat, but a client incorpo-

rates a foreign clause if it is not subsumed by the current

guiding-path constraints. This approach is supposed to scale

well on computational grids.

PSatz [4] is the parallel version of the Satz solver, and uses a

dynamic load-balancing mechanism based on work-stealing

techniques. This is similar to PSATO, without the presence

of a master. Several other parallel solvers [18, 3, 13, 15]

use ideas similar to PSATO, PSatz and Gradsat, along with

some optimizations and heuristics of their own.

pMiniSAT [10] is a divide and conquer based parallel SAT

solver that uses guiding paths. However, it additionally ex-

ploits the knowledge on these paths to improve clause shar-

ing. Clauses can be large when constrained by the guiding

path, but when considered with the knowledge of the guid-

ing path of a particular thread, the clause can be shortened

and therefore made smaller and more useful.

Clearly, there has been a lot of effort in trying to parallelize

SAT solving. In practice, divide and conquer approaches

have performed poorly compared to their portfolio counter-

parts, due to load balancing issues and difficulty of sharing

learned clauses. On the other hand, divide and conquer ap-

proaches make it easy to distribute search and scale it up

to a large number of cores. Portfolios need to be carefully

crafted and are not readily scalable. There have been di-



vide and conquer solvers written for computational grids,

but few attempts to massively parallelize portfolios. One

such attempt [5] shows some gains with a simple portfolio

that does not perform clause sharing. In general, both ap-

proaches have their merits, and our solver is an attempt to

bring the two together and obtain further improvements.

8. CONCLUSIONS
We have developed a distributed memory, parallel SAT solver

build on top of ManySAT that can scale to hundreds of cores

through the use of a divide and conquer strategy based on

guiding paths. We have shown that our MPI version can

deterministically solve hard SAT instances while existing

shared memory, parallel SAT solvers cannot under a rea-

sonable time constraint. Building our MPI solver on top

of ManySAT has enabled us to develop a hybrid, parallel

code which can use MPI processes for parallelism across

nodes and OpenMP threads for parallelism with a node.

Hybrid parallelization provides greater flexibility when at-

tempting to efficiently map software to hardware. In partic-

ular, we feel that this hybrid approach is especially useful

for NUMA architectures where we can launch one MPI pro-

cess per NUMA region and several threads within a NUMA

region. However, using ManySAT as our base solver has its

drawbacks. The biggest drawback is that ManySAT uses an

object-oriented approach which makes it difficult to write

MPI code that supports complex communication patterns

(other than the current divide and conquer solution) due to

the considerable software rearchitecting needed to make the

ManySAT data structures MPI-friendly.

In addition to the performance tuning opportunities and

more efficient software-hardware mapping, there are other

application-level optimizations that can potentially make

our solver much faster than existing SAT solvers. In Sec-

tion 6 we show that choice of variables used for search space

division can be critical to faster solvers. In fact, we saw

a super linear speedup just by splitting the search space

further by one variable. Our current heuristic is rather sim-

plistic in that we run one instance of ManySAT and ex-

tract the first few variables that the instance makes decisions

on. Naturally, this guess is based upon the VSIDS heuristic

within ManySAT and may not be good enough for search

space splitting at the higher level of guiding paths. One ap-

proach would be to fix the problem domain from which the

SAT/UNSAT datasets are derived from and specialize the

variable selection heuristic for that domain.

Good choices of variables will enable the solver to quickly

prune out uninteresting search paths, however, this has the

disadvantage of causing load imbalance between the proces-

sors. In fact, the divide and conquer strategy will cause

processors to go idle whenever the assigned search spaces

are easily eliminated. In these situations, it would be much

more effective to employ a work-stealing strategy where exit-

ing MPI processes replicate a running process and make ad-

ditional decisions to subdivide the running process’ search

space. The work stealing optimization should further re-

duce running times since all processors will be kept active

and deeper levels of the search tree will continue to be sub-

divided.

Many of the existing SAT solvers use randomness to diversify

the solver portfolio. However, the degree of diversification is

limited by the number of processors in a shared memory sys-

tem. Our MPI version is not limited by this and can launch

a large number of solvers each with different startup param-

eters (random seeds, restart frequency, clause sharing ratio,

etc). These are all optimizations that existing SAT solvers

cannot implement or take advantage of due to their limited

ability to scale. Although, we have not implemented these

optimizations we believe that our distributed memory par-

allel SAT solver has the potential to efficiently and quickly

solve hard SAT/UNSAT problems.

In this paper, we have implemented a distributed memory

SAT solver that can scale to hundreds of cores and do so effi-

ciently with a divide and conquer strategy based on guiding

paths. Our solver was able to successfully solve a hard SAT

instance deterministically while ManySAT failed under the

same conditions. We were also able to attain a speedup

of 3.3× over non-deterministic ManySAT on the same hard

SAT instance. There are still many challenges to address

and optimizations to explore, however, we have shown that

a distributed memory SAT solver is feasible and necessary

for hard SAT/UNSAT instances where existing shared mem-

ory SAT solvers fail.
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